Descriptions of functions in DetGB Software Package

1. Module DetIdeal

- (1) IsPosetIdeal
 - Calling Sequence: IsPosetIdeal(L, m, n)
 - Parameters: L a list of minors in X which are represented by their row and column indices; m, n the size of matrix X.
 - Description: The lsPosetIdeal command returns true if L forms a poset ideal, otherwise it returns false.
- (2) DiagOrder
 - Calling Sequence: DiagOrder("Scantype",m,n)
 - Parameters: "Scantype" -NWE, NWS, SEW, and SEN; m, n -the size of matrix X.
 - Description: The DiagOrder returns a lexicographic term order on K[X] which are diagonal induced by the corresponding scanning variable orders, where X is an $m \times n$ matrix with x_{ij} as its entries.

NWE: Assign the North-West corner variable x_{11} of X as the greatest and assign the next greatest variable by scanning row by row to the East. Others are similarly defined.

- (3) AntiDiagOrder
 - Calling Sequence: AntiDiagOrder("Scantype", m, n)
 - Parameters: "Scantype" -NEW, NES, SWE, and SWN ; m, n the size of matrix X.
 - Description: Description: The AntiDiagOrder returns a lexicographic term order on K[X] which are antidiagonal induced by the corresponding scanning variable orders, where X is an $m \times n$ matrix with x_{ij} as its entries.

NEW: Assign the North-East corner variable x_{1n} of X as the greatest and assign the next greatest variable by scanning row by row to the West. Others are similarly defined.

- (4) DetGen
 - Calling Sequence: DetGen(m, n, t)
 - Parameters: m, n the size of matrix X; t a positive integer
 - Description: The DetGen command constructs the generating minors of I_t of X whose entries are x_{ij} .
- (5) NormalDetGen
 - Calling Sequence: NormalDetGen(A, m, n)
 - Parameters: A a list [[R, r], [C, s]], where R, C are sequences of row and column indices respectively; r and s are sequences of nonnegative integers; m, n matrix size.
 - Description: The NormalDetGen command constructs generators for the normal determinantal ideal. That is, the (r_i+1) -minors of the first R_i rows and (s_j+1) -minors of the first C_i columns.
- (6) CorresDetRingDelta
 - Calling Sequence: CorresDetRingDelta(A, m, n)
 - Parameters: A a list [[R, r], [C, s]] where R, C are sequences of row and column indices respectively; r, s are sequences of nonnegative integers; m, n matrix size.
 - Description: The CorresDetRingDelta command returns δ such that the determinantal ring $B[X]/I = R(X; \delta)$ where I is the normal determinatal ideal determined by A, m, n.
- (7) AlphaT
 - Calling Sequence: AlphaT(r, t)
 - Parameters: r a non-increasing sequence $[r_1, r_2, \cdots, r_u]$; t an integer.

– Description: The AlphaT(r, t) command calculates $\alpha_t(r) = \sum_{i \leq t} r_i$ for the given sequence r.

- (8) GammaT
 - Calling Sequence: GammaT(r, t)
 - Parameters: r a non-increasing sequence $[r_1, r_2, \cdots, r_u]$; t an integer.
 - Description: The GammaT(r, t) command calculates

$$\gamma_t ([r_1, r_2, \cdots, r_u]) = \sum_{i=1}^u \max(r_i - t + 1, 0)$$

for the given sequence r.

- (9) DualShape
 - Calling Sequence: DualShape(Seq)
 - Parameters: Seq : Shape of a standard Young tableau.
 - Description: The DualShape(Seq) command calculates the dual shape[Bruns and Conca, 2022] of a standard Young table with the given shape Seq.
- (10) SpecialDec
 - Calling Sequence: SpecialDec(M, Len, Output_Format)
 - Parameters:
 - i. M: A non-increasing sequence, set $I_M = I_{M_1} I_{M_2} \cdots$
 - ii. Len : An integer representing the degree of the terms in Gröbner basis of I_M
 - iii. *Output_Format* :- Boolean Variable; *False* means to return all pairs of increasing decompositions , while *true* means to only return pairs of special increasing decompositions. The default value is true.
 - Description: The SpecialDec $(M, Len, Output_Format)$ command returns pairs of special increasing decompositions corresponding to the different shapes of the standard Young tableaux.
- (11) IsComparable
 - Calling Sequence: IsComparable(σ, τ)
 - Parameters: $\sigma,\,\tau$ The non-increasing sequences.
 - Description: The IsComparable(σ , τ) command returns whether σ and τ can be comparable. Hear, $\sigma \ge \tau$ means $\alpha_t(\sigma) \ge \alpha_t(\tau)$ for all k. If $\sigma \ge \tau$, return 1; if $\sigma < \tau$, return 0; if σ and τ are not comparable, return "Incomparable".
- (12) TermIncDecs
 - Calling Sequence: TermIncDecs(r)
 - Parameters: r The r -sequence of a term.
 - Description: The TermIncDecs(r) command calculates the result of the special increasing decomposition of r.
- (13) TermIncDecsLen
 - Calling Sequence: TermIncDecsLen(r)
 - Parameters: r The bottom row sequence of a term.
 - Description: The TermIncDecsLen(r) command calculates the length of the special increasing decomposition of r.
- (14) GammaHat
 - Calling Sequence: GammaHat(r, t)
 - Parameters: r The bottom sequence of a term.

- Description: The GammaHat(r, t) command calculates

 $\hat{\gamma}_t(r) = \{\gamma_t(\lambda): r \text{ has an incdecomposition of shape } \lambda\}$

for the given sequence r.

- $(15) \ {\rm ConstructSpcTerm}$
 - Calling Sequence: ConstructSpcTerm(b)
 - Parameters: b An integer, corresponding to the ideal $I_{b+2}I_b$
 - Description: The ConstructSpcTerm(b) command constructs a bottom row sequence corresponding to a term in in $(I_{b+2}I_b)$ of degree 2b + 3.

2. Module Ladder

- (1) ConstructLadder
 - Calling Sequence: ConstructLadder(U, L)
 - Parameters: U a list composed of upper corners [c, d]; L a list composed of lower corners [a, b].
 - Description: If U and L form a ladder, then the ConstructLadder command returns the input U, L, otherwise it returns False.
- (2) LadderGen
 - Calling Sequence: LadderGen(L, r)
 - Parameters: L the sequence of lower corners; r a sequence of nonnegative integers.
 - Description: The LadderGenconstructs the generators of the one-sided ladder determinantal ideal I(L, r).
- (3) OneLadder2Perm
 - Calling Sequence: OneLadder2Perm(L, r)
 - Parameters: L a sequence the lower corners of a ladder, r -a sequence of nonnegative integers with the same size as L.
 - Description: The OneLadder2Perm command returns a vexillary permutation w such that the Schubert determinantal ideal I_w equals to the one-sided ladder determinantal ideal I(L, r).
- (4) MixLadderGen
 - Calling Sequence: MixLadderGen(U, L, r)
 - Parameters: U a list of upper corners; L a list of lower corners; r a nonnegative integer.
 - Description: The MixLadder(U, L, r) command returns the geneators of the Mixed ladder determinantal ideal determinined by U, L, r.
- (5) BlockGen_ind
 - Calling Sequence: $BlockGen_ind(B,T)$
 - Parameters: B a sequence of [U, L] where U and L are the sequence of upper and lower corners respectively; r a sequence of nonnegative integers.
 - Description: The BlockGen_ind function constructs the generators of the blockwise determinantal ideal where each generator is represented by row and column indices.
- (6) BlockGen
 - Calling Sequence: BlockGen(B,T)
 - Parameters: B a sequence of [U, L] where U and L are the sequence of upper and lower corners respectively; r a sequence of nonnegative integers.
 - Description: The BlockGen function constructs the generators of the blockwise determinantal ideal.

- (7) DrawLadder
 - Calling Sequence: DrawLadder(U, L)
 - Parameters: U a list of upper corners; L a list of lower corners.
 - Description: The $\tt DrawLadder$ command draws the ladder determined by U and L.
- (8) DrawBlock
 - Calling Sequence: DrawBlock(B)
 - Parameters: B a sequence of [U, L] where U and L are the sequence of upper and lower corners respectively.
 - Description: The DrawBlock command draws the Blocks determined by B.
- 3. Module Schubert
 - (1) PermMat
 - Calling Sequence: PermMat(p)
 - Parameters: p a permutation.
 - Description: The PermMat function transforms a permutation p to a permutation matrix.
 - (2) EssSet
 - Calling Sequence: EssSet(p)
 - Parameters: p a permutation.
 - Description: The EssSet function computes the essential set of a permutation p.
 - (3) RotheDiagram
 - Calling Sequence: RotheDiagram(p)
 - Parameters: p a permutation.
 - Description: The RotheDiagram command constructs the Rothe diagram of a permutation p.
 - (4) DrawRothe
 - Calling Sequence: DrawRothe(p)
 - Parameters: p a permutation.
 - Description: The DrawRothe command draws the Rothe diagram of a permutation p.
 - (5) FultonGen
 - Calling Sequence: FultonGen(p)
 - Parameters: p a permutation.
 - Description: The FultonGen function constructs Fulton's generators G for the Schubert determinantal ideal of a permutation p.
 - (6) ElusiveGen
 - Calling Sequence: ElusiveGen(p)
 - Parameters: p a permutation.
 - Description: The ElusiveGen function constructs elusive minors E for the Schubert determinantal ideal of a permutation p.
 - (7) RedGBSchubert
 - Calling Sequence: RedGBSchubert(p, ord)
 - Parameters: p a permutation; ord an anti-diagnonal term order.
 - Description: The RedGBSchubert function constructs the reduced Groebner basis for the Schubert determinantal ideal of a permutation p w.r.t. the anti-digaonal term order ord.
 - (8) KLGen
 - Calling Sequence: KLGen(v,w)
 - Parameters: v, w two permutations with the same size.

– Description: The KLGen function constructs the generators for the Kazhdan-Lusztig ideal of two permutations v, w.

4. Module Combin

- (1) Deletion
 - Calling Sequence: Deletion(A, p)
 - Parameters: A a standard tableau of shape (s_1, s_2, \ldots) ; p an index such that $s_p > s_{p+1}$.
 - Description: The Deletion function constructs a standard tableua and a number x.
- $(\mathbf{2}) \ \text{Insertion}$
 - Calling Sequence: Insertion(A, x)
 - Parameters: A a standard tableau of shape (s_1, s_2, \ldots) ; x an integer.
 - Description: The <code>Insertion</code> function constructs a standard tableua and an index p.
- (**3**) RSK
 - Calling Sequence: RSK(T)
 - $-\,$ Parameters: T a non-empty standard bitableau.
 - Description: The RSK function returns a two-row array A and a monomial which corresponding to A.
- (4) RSKInv
 - Calling Sequence: RSKInv(A)
 - Parameters: A a two-row array which equals to RSK(B) for some bitableau B.
 - Description: The RSKInv function returns a standard bitableau of a two-row array A.
- (5) DrawBitab
 - Calling Sequence: DrawBitab(T)
 - $-\,$ Parameters: T a non-empty standard bitableau.
 - Description: The DrawBitab command draws the bitableau of T'.
- (6) Mitosis
 - Calling Sequence: Mitosis(p)
 - Parameters: p a permutation.
 - Description: The $\tt Mitosis$ command computes all the reduced pipe dreams of a permutation p.
- (7) DrawPipeDream
 - Calling Sequence: DrawPipeDream(p)
 - Parameters: p a permutation.
 - Description: The DrawPipeDream command draws all the reduced pipe dreams of a permutation p.
- (8) StandardRep
 - Calling Sequence: StandardRep(X, Y, m, n)
 - Parameters: X, Y two lists with the same length; m, n: matrix size.
 - Description: The StandardRep command returns the standard representation of $X \cdot Y$.