W-characteristic sets of LEX Gröbner bases

Preliminaries: LEX Gröbner bases

LEX term ordering \(u = x^n \) for \(\alpha \) if the left rightmost nonzero entry in the vector \(\alpha \) is positive.

\(\langle P \rangle \) is a Gröbner basis.

Normal Form \(\langle G \rangle \) is a Gröbner basis of \((P) \).

Ideal \(\langle G \rangle \) is a Gröbner basis.

On W-characteristic Sets of LEX Gröbner Bases

Preliminaries: triangular sets

Variable ordering \(x_1 < \ldots < x_n \) for \(\langle P \rangle \) of \(F \)

Triangular set Any finite, nonempty ordered set \(T = \{T_{i_1}, \ldots, T_{i_n}\} \) of polynomials.

Pseudo-remainder \(F \) is a polynomial under \(\langle G \rangle \) two polynomials with \(\langle G \rangle = x_2 \).

Example (continued) \(x^2 + 2yz - (1 - a^2)z = \alpha \)

Preliminaries: triangular sets

Preliminaries: LEX Gröbner bases

Background: structures of LEX Gröbner bases

They were studied first by Lazard [4] for bivariate ideals and then extended to general zero-dimensional multivariate (radical) ideals. Based on the structures of LEX Gröbner bases, algorithms have been proposed to compute triangular decompositions out of LEX Gröbner bases for zero-dimensional ideals [5, 2]. The relationships between LEX Gröbner bases and Ritt characteristic sets were explored in [1] and then made clearer in [9] with the concept of W-characteristic sets.

W-characteristic set

Let \(P \subset \mathbb{K}[x] \) be a polynomial set and \(G \) be the reduced LEX Gröbner basis of \((P)\). Then the set

\[
\{ g \in \mathbb{K}[x] : g \not\in \langle G \rangle \} \cap \langle G \rangle < \mathbb{K}[x],
\]

ordered according to \(\langle \mathbb{K} \rangle \), where \(\langle \mathbb{K} \rangle = \{ g \in \mathbb{K}[x] : g(x) = x \} \), is called the W-characteristic set of \((P)\).

Basic properties

Let \(C \) be the W-characteristic set of \((P) \subseteq \mathbb{K}[x] \). Then (a) for any \(P \subseteq \mathbb{R} \), prem\((PC) \subseteq \mathbb{R} \) (b) \(C \cap \mathbb{K}[x] \subseteq \mathbb{P}[C] \subseteq \mathbb{Z}[C] \).

Normality and Pseudo-divisibility in W-characteristic sets (and thus in LEX Gröbner bases)

Either normality or pseudo-divisibility: a theorem

Let \(C = \{C_1, \ldots, C_l \} \) be the W-characteristic set of \((P) \subseteq \mathbb{K}[x] \). If \(C \) is not normal, then there exists an integer \(k \leq r \) such that \(\{C_1, \ldots, C_k \} \) is normal and \(\{C_{k+1}, \ldots, C_l \} \) is not regular.

Assume that the variables \(x_1, \ldots, x_r \) are ordered such that the parameters of \(C_i \) are all smaller than the other variables and let \(I_{k+1} \) be \(\text{in}(C_{k+1}) \), and \(I_k \) be the integer such that \(\text{lt}(I_k) = \text{lt}(C_k) \).

(a) If \(I_{k+1} \) is not reduced with respect to \(C_k \), then

\[
\text{prem}_{\langle C_{k+1} \rangle}(C_{k+1}) = I_k \text{ prem}_{\langle C_k \rangle}(C_k).
\]

(b) If \(I_{k+1} \) is reduced with respect to \(C_k \), then \(\text{res}(I_{k+1}, C_{k+1}) = 0 \) or \(\text{prem}_{\langle C_{k+1} \rangle}(C_{k+1}) = 0 \) as either \(\text{prem}_{\langle C \rangle}(C_{k+1}, C_{k+1}) = 0 \) or \(\text{prem}_{\langle C \rangle}(C_{k+1}, C_{k+1}) = 0 \).

Characteristic pairs

Either \(\text{prem}_{\langle C \rangle}(C_{k+1}, C_{k+1}) = 0 \) or \(\text{prem}_{\langle C \rangle}(C_{k+1}, C_{k+1}) = 0 \).

Example (continued)

The W-characteristic set above

\[
x^2 + 2yz - (1 - a^2)z - a = 0
\]

is not normal (the initial \(x^2 + z - a^2 \) involves \(x \)), and thus it is not regular:

\[
x^2 + 2yz - (1 - a^2)z = (x^2 + z - a^2)(x + 1),
\]

which corresponds to (b). left.

Characterization decomposition

A set \(\{G_1, \ldots, G_l\} \) of characteristic pairs of \((P) \subseteq \mathbb{K}[x] \) is called a characteristic decomposition of \((P) \) if

\[
Z(F) = \bigcup_{i=1}^l Z(G_i) \bigcup_{i=1}^l Z(\text{in}(G_i)) = \bigcup_{i=1}^l Z(\text{sat}(G_i)).
\]

If \(C \) is regular, \(C \) is normal and a Ritt characteristic set.

Transform to strong characteristic pair \(G \) is a characteristic pair, let \(\tilde{G} \) and \(\tilde{C} \) be the reduced LEX Gröbner basis and W-characteristic set of \(\text{sat}(C) \) respectively. Then \(\tilde{G} \) is normal, \(\tilde{C} \) is regular, and thus \(\tilde{G} \) is a strong characteristic pair.

References

